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Background and Motivation



Deep Learning: Theory vs Practice
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Compositional structures in Modern Machine Learning

Models Data Algorithms
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Composition is Dynamics

Compositional function
y = FT ◦ FT−1 ◦ · · · ◦ F0(x)

Dynamics

y = xT+1, x = x0

xt+1 = Ft(xt) t = 0, 1, . . . , T
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Three Categories of Interactions

Machine Learning via
Dynamical Systems

Dynamical formulation
of deep learning
Dynamical analysis of
learning algorithms
Numerical analysis and
architecture design

Machine Learning for
Dynamical Systems

Time series forecasting
Sequence
classification
Sequence to Sequence
models

Machine Learning of
Dynamical Systems

Learning dynamical
models from
trajectories
Learning reduced
order models
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Machine Learning via Dynamical Systems

Background on Supervised Learning



Supervised Learning

Supervised learning is about making predictions

Dataset: D = {xi ∈ X , yi ∈ Y}N
i=1, Target Function: F∗ : X → Y , yi = F∗(xi)

Goal: Learn/Approximate F∗ using information from D
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Hypothesis Space

To approximate F∗, we first define a hypothesis space H consisting of candidate
functions

Linear models for regression and classification

H =
{∑

j ajϕj(x) : aj ∈ R
}

Shallow neural networks

H =
{∑

j ajσ(wT
j x + bj) : wj ∈ Rd,aj,bj ∈ R

}
σ is the activation function, e.g. σ(z) = max(0, z) (ReLU); σ(z) = tanh(z) (Tanh)
Deep neural networks

H = {FT ◦ FT−1 ◦ · · · ◦ F0(x) : Each Ft is a shallow network}
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Empirical and Population Risk Minimization

Learning/approximation involves picking out the “best” F ∈ H so that it makes
similar predictions to F∗

Empirical risk minimization (ERM)

F̂ ←− arg min
F∈H

1
N

N∑
i=1

Φ(F(xi), yi︸︷︷︸
F∗(xi)

) (Φ is a loss function)

Population risk minimization (PRM)

F̃ ←− arg min
F∈H

E(x,y)∼µ∗Φ(F(x), y) (µ∗ is the input-output distribution)

We want to solve PRM, but we often can only perform ERM. The gap between F̂
and F̃ is the problem of generalization.
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Three Paradigms of Supervised Learning
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Goal: study new phenomena that arise in
deep learning with respect to

approximation, optimization and
generalization



Machine Learning via Dynamical Systems

Approximation Theory for Continuous-time ResNets



The Problem of Approximation

Universal Approximation Property

Given a target F∗ ∈ C and ε > 0, does
there exists a F̃ ∈ H such that

‖F∗ − F̃‖ ≤ ε?

Key question: how to achieve approximation via composition?
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The Continuum Idealization of Residual Networks
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Example: Flow Maps as Function Approximators

Binary Classification Problem

Not linearly separable!

Evolve with the ODE

ẋt,1 = −xt,2 sin(t) x0,1 = z1

ẋt,2 = − 1
2(1− x2

t,1)xt,2 + xt,1 cos(t) x0,2 = z2

Classify using linear classifier at the end:

g(xT) = 1xT,1>0
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Approximating Functions by Dynamics
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What conditions on F ,G are sufficient to
induce the universal approximation

property on H(F ,G)?



Universal Approximation by Flows

Su�cient conditions for universal approximation by flows [L, Lin & Shen, 19]
In dimension ≥ 2, always possible under mild conditions

1. G covers range of F∗

2. F is restricted a�ne invariant

3. Conv(F) contains a well
function

In dimension 1, only increasing functions if G = {id}
Approximation rates can be characterized for d = 1. For d ≥ 2, a general
characterization is open.
Connections with controllability [CLT, 19; TG, 20]

Q. Li, T. Lin, and Z. Shen, “Deep Learning via Dynamical Systems: An Approximation Perspective,” en, To appear in J. Eur. Math. Soc. (JEMS), 2021, 2019.
arXiv: 1912.10382

C. Cuchiero, M. Larsson, and J. Teichmann, “Deep neural networks, generic universal interpolation, and controlled ODEs,” en, arXiv:1908.07838 [math],
2019. arXiv: 1908.07838

P. Tabuada and B. Gharesifard, “Universal Approximation Power of Deep Residual Neural Networks via Nonlinear Control Theory,” arXiv:2007.06007,
2020. arXiv: 2007.06007
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Machine Learning via Dynamical Systems

Deep Learning and Optimal Control



Calculus of Variations and Optimal Control
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Deep Learning is Mean-field Optimal Control

The PRM problem using H(F ,G) can be formulated as

inf
θ∈L∞([0,T],Θ)

J(θ) := Eµ∗

Φ(xT, y) +

∫ T

0
R(xt, θt)︸ ︷︷ ︸
Regularizer

dt


ẋt = f (xt, θt) 0 ≤ t ≤ T (x0, y) ∼ µ∗

This is a mean-field optimal control problem, because we need to select θ that
controls not one, but an entire distribution of inputs and outputs

Key questions:
Theoretical: Necessary and su�cient conditions for optimality
Practical: Understanding, improving learning algorithms
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Mathematical Results and Numerical Algorithms

Necessary conditions
I Mean-field Pontryagin’s maximum principle (PMP) [E, Han & L, 19]

Necesssary and Su�cient Conditions
I Mean-field Hamilton Jacobi Bellman equations (HJB) [E, Han & L, 19]

Algorithms
I Training algorithms without gradient descent (based on PMP, generalizes back

propagation) [L, Chen, Tai & E, 18]
I Training algorithms for quantized networks [L and Hao, 18]

W. E, J. Han, and Q. Li, “A mean-field optimal control formulation of deep learning,” Research in the Mathematical Sciences, vol. 6, no. 1, p. 10, 2019,
issn: 2522-0144

Q. Li, L. Chen, C. Tai, and W. E, “Maximum principle based algorithms for deep learning,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 5998–6026, 2017

Q. Li and S. Hao, “An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks,” in Proceedings of the 35th
International Conference on Machine Learning, vol. 80, 2018, pp. 2985–2994
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Open Loop and Closed Loop Control

Controlled dynamics:
ẋt = f (xt, θt).

Open-loop optimal control: θ∗t a deterministic function of t
I Works for fixed x0
I Unstable to perturbations on x0

Close-loop optimal control: θ∗t = ξ(x∗t , t)
I Feed-back based on current state
I Stable to perturbations on x0 (or any xt)
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Adversarial Examples
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Adversarial Defense based on Closed Loop Optimal Control

We can use closed loop control to stabilize propagation of features through a deep
network

This leads to increased adversarial robustness without the need to retrain the
model [Chen, L and Zhang, 21]

Z. Chen, Q. Li, and Z. Zhang, “Towards robust neural networks via close-loop control,” in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=2AL06y9cDE-
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Machine Learning via Dynamical Systems

Dynamical Analysis of Learning Algorithms



Learning Algorithms

Empirical risk
J(θ;D) =

1
|D|

∑
(x,y)∼D

Φ(F(x; θ), y)

Simplest learning (optimization) algorithm is the stochastic gradient desecent

θk+1 = θk − η︸︷︷︸
learning rate

∇θJ(θ;Dk)

where Dk is a random subset of D
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Convergence Bounds vs Modelling Dynamics

Convergence bounds:

E‖θk − θ∗‖ ≤ r(k) (r(k)→ 0)

Dynamical models:

max
k

E‖θk − skη‖ ≤ r(η) (r(η)→ 0)

{st} is a continuous-time dynamical system

Such techniques dates back to the analysis of finite-di�erence algorithms using
modified equations

R. Warming and B. Hyett, “The modified equation approach to the stability and accuracy analysis of finite-di�erence methods,” Journal of
computational physics, vol. 14, no. 2, pp. 159–179, 1974
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Stochastic Modified Equations

SGD:
θk+1 = θk − η∇θJ(θ;Dk)

Stochastic modified equations

dst = −∇θJ(st;D)dt +
√
ηΣ(st)

1
2 dWt︸︷︷︸

Wiener process

where
Σ(s) = CovDk(∇J(s;Dk)) (Gradient covariance)

Weak approximation of {θk} by {skη} [L, Tai & E, 17,19]
Extensions
I Higher order
I SGD variants (adaptive SGD, momentum SGD)

Q. Li, C. Tai, and W. E, “Stochastic modified equations and adaptive stochastic gradient algorithms,” in International Conference on Machine Learning,
2017

Q. Li, C. Tai, and W. E, “Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations,” Journal of
Machine Learning Research, vol. 20, no. 40, pp. 1–47, 2019
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Applications of Dynamical Modelling of Optimization

Many Applications
Tuning learning rates can be formulated as a (stochastic) optimal control
problem [L, Tai & E, 17]
Quantitative analysis of batch normalization [Cai, L & Shen, 19]
Analysis and improvement of adversarial training [Ye, L, Zhou & Zhu, 21]

Q. Li, C. Tai, and W. E, “Stochastic modified equations and adaptive stochastic gradient algorithms,” in International Conference on Machine Learning,
2017

Y. Cai, Q. Li, and Z. Shen, “A quantitative analysis of the e�ect of batch normalization on gradient descent,” in International Conference on Machine
Learning, PMLR, 2019, pp. 882–890

N. Ye, Q. Li, X.-Y. Zhou, and Z. Zhu, “Amata: An annealing mechanism for adversarial training acceleration,” AAAI 2021, [arXiv preprint arXiv:2012.08112],
2021
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Machine Learning for Dynamical Systems

Supervised Learning of Dynamical Relationships



Learning Dynamic Relationships

Often, supervised learning has to be performed on the dynamic setting
Price forecasting: given past prices, predict tomorrow’s price
Machine translation: given context, translate a sentence
Learning response systems: given temporal forcing, predict temporal response

Common features
Each output depends on sequence of inputs
Need to model a sequence of input-output relationships

Deep Learning on temporal/sequential data
↓

Interactions between dynamical structures in model and data
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Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F∗(x)

Dynamic setting

(input) x = {xk ∈ Rd} ∈ X
(output) y = {yk ∈ Rn} ∈ Y
(target) yk = H∗k(x) ∀ k

Goal of supervised learning
Static: learn/approximate F∗

Dynamic: learn/approximate {H∗k}
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Some Examples of Learning Temporal Relationships

Time series classification / regression

yk = H∗k(x) =
∑
j≤k

αkxk (Adding Problem)

Time series forecasting

yk = xk+1 = H∗k({xj : j ≤ k})

Sequence to sequence models

yk = H∗k({xj : j ∈ Z})
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Machine Learning for Dynamical Systems

Approximation Theory of RNNs



The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

hk+1 = σ(Whk + Uxk), k = 0, 1, . . . ,K − 1
h0 = 0
ŷk = c>hK

The RNN parametrizes a sequence of functions for k = 1, 2, . . .

Ĥk = {x0, . . . , xk−1} 7→ ŷk

Training RNN: adjust (c,W,U) so that

Ĥk ≈ H∗k, k = 1, 2, . . . ,K

28 49
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The Recurrent Neural Network Hypothesis Space

From the outset, the RNN approach parametrizes a sequence of
high-dimensional functions together

This is akin to a reverse of the Mori-Zwanzig formalism
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The Recurrent Neural Network Hypothesis Space

From the outset, the RNN approach parametrizes a sequence of
high-dimensional functions together
This is akin to a reverse of the Mori-Zwanzig formalism

C. Ma, J. Wang, and W. E, “Model reduction with memory and the machine learning of dynamical systems,” Communications in Computational Physics,
vol. 25, no. 4, pp. 947–962, 2018, issn: 1991-7120. doi: https://doi.org/10.4208/cicp.OA-2018-0269

R. Zwanzig, Nonequilibrium statistical mechanics. Oxford University Press, 2001
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Empirically, it is found that memory
affects RNN performance. Can we

rigorously investigate this phenomena?



Approximation Theory of Linear Continuous-time RNNs

We take a continuum approach:
Continuous-time approximation:

hk+1 = hk + δ︸ ︷︷ ︸
residual variant

σ(Whk + Uxk) → ḣt = σ(Wht + Uxt)

Linear activations: σ(z) = z
This allows us to prove precise approximation results [Li, Han, E & L, 21]

E�cient approximation if and only if there is exponential memory decay in {H∗k}
If there is no exponential decay, then one may require exponentially large
number of parameters for approximation - curse of memory

Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks: Approximation and optimization analysis,” in International
Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=8Sqhl-nF50
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Extension to Convolution-based Methods

We can extend the previous approach to analyze CNN based methods (e.g.
WaveNet) for time-series

Key question: how is RNN and CNN di�erent?

RNN approximation depends on memory decay [Li, Han, E & L, 21]
CNN approximation depends on spectral regularity (sparsity) [Jiang, Li & L, 21]

Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks: Approximation and optimization analysis,” in International
Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=8Sqhl-nF50

H. Jiang, Z. Li, and Q. Li, “Approximation theory of convolutional architectures for time series modelling,” Submitted, 2021
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Machine Learning for Dynamical Systems

Optimization Dynamics of RNNs



The Issue of Memory for Optimization

RNN is notoriously hard to train for long sequences
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(a) Exponential sum target
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(b) Airy function target
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(c) Lorenz dynamics target

When and why does the training plateau?
What is the source of the plateaus?
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Building Memory Explicitly into the Target Functional

Let us consider a target functional that builds explicitly the e�ect of memory

H∗T(x) =

∫ ∞
0

xT−tρ(t)dt (Riesz representation) ρ(t) = ρ̄(t) + ρ0,ω(t)

We can prove that as memory increases, the training stalls exponentially, with
escape time estimates [Li, Han, E & L, 21]

Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks: Approximation and optimization analysis,” in International
Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=8Sqhl-nF50
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Plateauing Time Scale

Predicted: log[Plateauing time] ∝ c/ω for ω small
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Plateauing for General Cases

Although our analysis is on simplified setting, the plateauing occurs generally
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Machine Learning of Dynamical Systems

Learning Stable and Interpretable Dynamics



Motivation

Rayleigh-Bénard convection
(High-dimensional)

Lorenz ‘63 model
(Low-dimensional)

Data-driven method to characterize high-dimensional dynamics?
Learning reduced coordinates
Learning dynamics on these coordinates
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The Basic Setup

Consider a high-dimensional dynamical system

ẋ = F(x), x(0) ∈ R

from which we get observation data

D = {x(t)i : t ∈ [0, T], i = 1, . . . ,N}

Goals:
Learn a function ϕ : Rd → Rm

Learn a function f : Rm → Rm such that the reduced dynamics

ḣ = f (h), h(0) = ϕ(x(0))

satisfy h(t) ≈ ϕ(x(t)) for all t ∈ [0, T]
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Structure

The reduction function ϕ and the vector field f should satisfy some structural
constraints
Reduction function

m should be much smaller than d
ϕ should be approximately invertible

Vector field
The dynamics ḣ = f (h) should be stable
We should be able to interpret the physical structure of the learned f
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Learning dynamics

Two classes of approaches to learn dynamics from data
Unstructured approaches: sparse identification, direct NN fitting, ...
I Accurate over short times
I Flexible
I Unstable

Structured approaches: Hamiltonian, gradient, ...
I Stable
I interpretable
I Limited approximation power

Can we get the best of both worlds?
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Onsager principle

A general dynamical model for near-equilibrium process

Mḣ = −∇V(h)

Second law (dissipative system)

u ·Mu ≥ 0 ∀u ∈ Rm =⇒ d
dtV ≤ 0

Onsager’s reciprocal relations (Onsager, 1931)

Mij = Mji

But, limited to linearized regime.

L. Onsager, “Reciprocal relations in irreversible processes. i.,” Physical review, vol. 37, no. 4, p. 405, 1931
L. Onsager, “Reciprocal relations in irreversible processes. ii.,” Physical review, vol. 38, no. 12, p. 2265, 1931
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Generalized Onsager principle

We generalise the Onsager principle

[M(h) + W(h)] ḣ = −∇V(h) + g(h)

M is symmetric positive semi-definite (dissipative, reciprocal relations)
W is anti-symmetric (conservative)
V is lower-bounded, su�cient growth (potential, free energy, -entropy)
g is a simple function (external force, control)
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Data-Driven Approach

There are two main challenges
1. How to find a good set of generalized

coordinates h = ϕ(x)

2. How to determine M,W, V,g
Data-driven approach [Yu, Tian, E & L, 20]

1. Use PCA / near-isometric
auto-encoder to parametrize ϕ

2. Use suitably designed neural
networks to parametrize M,W, V,g
(OnsagerNet)

H. Yu, X. Tian, W. E, and Q. Li, “Onsagernet: Learning stable and interpretable dynamics using a generalized onsager principle,” arXiv preprint
arXiv:2009.02327, 2020
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Application: Rayleigh-Bénard convection (RBC)

The RBC equations for x = (u, θ)

du
dt + (u · ∇)u = ν∆u−∇p + α0gθ

∇ · u = 0
dθ
dt + u · ∇θ = κ∆θ + uyΓ

u: velocity field
θ: temperature profile

Lorenz ‘63 model is a reduction of the RBC equations by keeping the 3 most
unstable Fourier modes, but it is quantitatively inaccurate
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Trajectory-wise accuracy
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Reproduction of phase portraits
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Visualizing learned energy function
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Machine Learning of Dynamical Systems

Machine Learning for Rare Events



Rare Events

Many important applications
Structure of macro-molecules
Chemical reactions
Nucleation in phase transitions

Quantities of interest
Transition rates
Potential landscapes
Invariant distributions

Challenge: high dimensions!
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Machine Learning for Rare Events

Machine learning can deal with high-dimensions in a data-driven manner
Computing commitor functions (reaction rates) in high-dimensions [L, Lin &
Ren, 19]
Computing quasipotentials in high-dimensions [Lin, L & Ren, 20]

Q. Li, B. Lin, and W. Ren, “Computing committor functions for the study of rare events using deep learning,” The Journal of Chemical Physics, vol. 151,
no. 5, p. 054 112, 2019

B. Lin, Q. Li, and W. Ren, “A data driven method for computing quasipotentials,” Mathematical and Scientific Machine Learning, MSML 2021 [arXiv
preprint arXiv:2012.09111], 2020
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Some Open Problems

ML via DS
I Theory for continuum limits
I HJB based learning algorithms

ML for DS
I Non-linear extensions
I Analysis of encoder-decoder models
I Analysis of attention models

ML of DS
I Approximation theory for structured models
I Data-dependent generalization results

More detailed account of ML via DS: lecture notes at https://blog.nus.edu.sg/qianxiaoli/teaching/
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Thank you!
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